Abstract

The adsorption isotherms of various alkenes and their mixtures in zeolites such as silicalite-1 (MFI-type), theta-1 (TON-type), and deca-dodecasil 3R (DDR-type) were calculated using the grand canonical Monte Carlo (GCMC) approach. Additionally, the adsorption of alkene–alkane mixtures was simulated. The GCMC approach was combined with the configurational-bias Monte Carlo (CBMC) method. Effective Lennard–Jones parameters for the interaction between the oxygen atoms of all-silica zeolites and the sp2-hybridized groups of linear alkenes were determined using a united atom force field. They were adjusted to the experimental adsorption data of silicalite-1 (MFI). The inflection behaviour of the 1-heptene isotherm was investigated in detail. It is shown that, in the inflection region, the 1-heptene molecules alter their end-to-end length depending on their location. The occurrence of a maximum in the mixture adsorption isotherms is attributed to two effects: entropic effects and non-ideality effects. From the mixture simulations some general conclusions concerning the separation of hydrocarbons with silicalite-1 can be drawn. The transferability of the Lennard–Jones parameters to other zeolites was investigated. Simulations of adsorption isotherms in the zeolites theta-1 and DD3R and their comparison with experimental data indicate the possibility of transferring the parameters to other all-silica zeolites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call