Abstract

Adaptive polymers are being designed with dynamic molecular bonds or chain interactions to respond with external stimuli with unparalleled mechanical properties and multifunctionality. An elegant example is to substantially enhance the stretchability and toughness of hydrogels through the use of ionic bond interactions. To assist the materials design and applications, a predictive theory is in high demand. However, existing multi-scale mechanics models often rely on empirical assumptions and relationships derived from polymer chemistry or physics to describe the evolution of microscale details under external stimuli, which are challenging to be validated experimentally. This study introduces a new methodology to develop constitutive theories for stretchable hydrogels based on insights garnered from molecular dynamics (MD) simulations. The continuum-level viscoelastic theory establishes the thermodynamics framework for stress-strain relationships, while MD simulations inform the evolution mechanisms of microscale bond interactions and network rearrangements, such as the bond distance and network relaxation time. These insights are then properly formulated based on polymer physics principles and fed into the continuum-level model. The resulting constitutive theory closely captures the stress responses at various loading conditions observed in experiments, as well as the microscale system volume and bond distance uncovered in MD simulations. Parametric studies are conducted to investigate the influences of various loading and material parameters on the mechanical properties of the materials, including loading rates, network crosslinking density, maximum strain, and bonding strength. Overall, the study establishes the connection between microscale network structure and mechanical responses of stretchable hydrogels with dynamic ionic bonds. It also offers practical guidance for optimizing material structures and loading conditions to enhance energy absorption and dissipation capabilities. The modeling approach can be extended to the study of other adaptive polymers with different dynamic bonds to create more precise and physically meaningful constitutive models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.