Abstract

Asphalt binder modified by styrene butadiene styrene (SBS) has been widely used for improving pavement quality. However, compatibility issues between asphalt and SBS remain for phase separation and storage stability. This study aims to investigate the compatibility between asphalt and SBS with different molecular structures. Coarse grained models for asphalt binder were built based on Dissipative Particle Dynamics (DPD) and validated based on the calculated interlayer distance and diffusion coefficient of asphaltenes. The interaction energy and gyration radius were used as performance indicators of compatibility from molecular simulation; while complex viscosity tests and fluorescence microscopy were conducted for experimental evaluation. The results show that asphaltenes would aggregate more in SBS-modified asphalt than in virgin asphalt. The addition of SBS reduces diffusion coefficients of aromatics, resins, and saturates, but not asphaltenes. The SBS with less styrene shows the stronger interaction energy and the larger gyration radius intersecting with asphalt matrix, thus improves compatibility and stability of SBS-modified asphalt. These findings are in good agreements with the viscosity results of Cole–Cole plots and the observed phase morphology of SBS-modified asphalt. The analysis findings provide fundamental understanding of the interaction mechanisms between SBS polymer and asphalt at molecular scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.