Abstract
AbstractGlaciers and ice sheets cover over 10 % of Earth's land surface area and store a globally significant amount of dissolved organic matter (DOM), which is highly bioavailable when exported to proglacial environments. Recent rapid glacier mass loss is hypothesized to have increased fluxes of DOM from these environments, yet the molecular composition of glacially derived DOM has only been studied for a handful of glaciers. We determine DOM composition using ultrahigh resolution mass spectrometry from a diverse suite of Arctic glacial environments, including time series sampling from an ice sheet catchment in Greenland (Russell Glacier) and outflow from valley glaciers in catchments with varying degrees of glacial cover in Svalbard. Samples from the Greenland outflow time series exhibited a higher degree of similarity than glacier outflow between glaciers in Svalbard; however, supraglacial meltwater samples from Greenland and Svalbard were more similar to each other than corresponding glacial outflow. Outflow from Russell Glacier was enriched in polyphenolic formulae, potentially reflecting upstream inputs from plants and soils, or inputs from paleosols overridden by the ice sheet, whereas Svalbard rivers exhibited a high level of molecular richness and dissimilarity between sites. When comparing DOM compositional analyses from other aquatic systems, aliphatic, and peptide‐like formulae appear particularly abundant in supraglacial meltwater, suggesting the DOM quickly metabolized in previous incubations of glacial water originates from energy‐rich supraglacial sources. Therefore, as glaciers lose mass across the region, higher‐quality fuel for microbial degradation will increase heterotrophy in coastal systems with ramifications for carbon cycling.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.