Abstract

Most previous studies on gene expression during insect diapause do not address among-tissue variation in physiological processes. We measured transcriptomic changes during larval diapause in the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae). We conducted RNA-seq on fat body, the supraesophageal ganglion, midgut, hindgut, and Malpighian tubules during pre-diapause, diapause maintenance, post-diapause quiescence, and post-diapause development. We observed a small, but consistent, proportion of genes within each gene expression profile that were shared among tissues, lending support for a core set of diapause-associated genes whose expression is tissue-independent. We evaluated the overarching hypotheses that diapause would be associated with cell cycle arrest, developmental arrest, and increased stress tolerance and found evidence of repressed TOR and insulin signaling, reduced cell cycle activity and increased capacity of stress response via heat shock protein expression and remodeling of the cytoskeleton. However, these processes varied among tissues, with the brain and fat body appearing to maintain higher levels of cellular activity during diapause than the midgut or Malpighian tubules. We also observed temperature-dependent changes in gene expression during diapause maintenance, particularly in genes related to the heat shock response and MAPK, insulin, and TOR signaling pathways. Additionally, we provide evidence for epigenetic reorganization during the diapause/post-diapause quiescence transition and expression of genes involved in post-translational modification, highlighting the need for investigations of the protein activity of these candidate genes and processes. We conclude that diapause development is coordinated via diverse tissue-specific gene expression profiles and that canonical diapause phenotypes vary among tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.