Abstract

The reprogramming of retinal pigment epithelium (RPE) cells into retinal cells (transdifferentiation) lies in the bases of retinal regeneration in several Urodela. The identification of the key genes involved in this process helps with looking for approaches to the prevention and treatment of RPE-related degenerative diseases of the human retina. The purpose of our study was to examine the transcriptome changes at initial stages of RPE cell reprogramming in adult newt Pleurodeles waltl. RPE was isolated from the eye samples of day 0, 4, and 7 after experimental surgical detachment of the neural retina and was used for a de novo transcriptome assembly through the RNA-Seq method. A total of 1019 transcripts corresponding to the differently expressed genes have been revealed in silico: the 83 increased the expression at an early stage, and 168 increased the expression at a late stage of RPE reprogramming. We have identified up-regulation of classical early response genes, chaperones and co-chaperones, genes involved in the regulation of protein biosynthesis, suppressors of oncogenes, and EMT-related genes. We revealed the growth in the proportion of down-regulated ribosomal and translation-associated genes. Our findings contribute to revealing the molecular mechanism of RPE reprogramming in Urodela.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.