Abstract

Bottom-up materials design by the conceiving of new molecular building blocks is powerful and chemists are uniquely qualified to innovate. Liquid crystals (LCs) and related soft crystals, collectively called mesophases, naturally create materials with dynamic properties. The thermotropic LC state has a liquid-like intermolecular disorder, but the cooperative nature of these materials facilitates a long-range directional order (alignment) that couples strongly to applied electric/magnetic fields and interfaces. Thermotropic LCs are held together by mesogen cores, which are often unsaturated with anisotropic polarizability, and are appended with flexible (often n-alkane) side chains. Thermal excitation of the side chains produces large amplitude motions that drive a melting transition, and the anisotropic attractions between mesogenic cores produce a directional organization that produces the LC order. LCs are liquids as defined by thermodynamics and may not contain three-dimensional (3D) organization. However, in many cases there are 3D ordered phases below the melting temperatures, which are soft (deformable) plastic materials. Unconventional mesogens offer opportunities to create responsive molecular assemblies with optical, electronic, or magnetic activity. I will detail in this account my efforts to control these dynamic states with the goal of creating polar organizations in columnar LCs. The use of molecular shape, dative bonding, and dynamic correlations between molecules in fluid/plastic phases will be highlighted and how applied electric fields can polarize select materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call