Abstract

Nicotine is an alkaloid and potent parasympathomimetic stimulant found in the leaves of many plants including Nicotiana tabacum, which functions as an anti-herbivore chemical and an insecticide. Chemoreceptors embedded in the gustatory receptor neurons (GRNs) enable animals to judge the quality of bitter compounds and respond to them. Various taste receptors such as gustatory receptors (GRs), ionotropic receptors (IRs), transient receptor potential channels (TRPs), and pickpocket channels (PPKs) have been shown to have important roles in taste sensation. However, the mechanism underlying nicotine taste sensation has not been resolved in the insect model. Here we identify molecular receptors to detect the taste of nicotine and provide electrophysiological and behavioral evidence that gustatory receptors are required for avoiding nicotine-laced foods. Our results demonstrate that gustatory receptors are reasonable targets to develop new pesticides that maximize the insecticidal effects of nicotine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.