Abstract
The analysis of the state of research on the chemical composition, functional nature and structure of the main components of the lignin-carbohydrate matrix allows considering the wood substance as a thermodynamically self-organizing nanobiocomposite system. Features of biosynthesis of the wood matrix main biopolymers, the formation of their functional nature and structure determine the complex hierarchical organization of cell walls. The supramolecular level of biosynthesis considers the interaction of cell wall components. On the one hand, these are questions of dynamics of cell walls synthesis and processes of self-organization that control the formation of chaotic objects of biological origin; on the other hand, it is the question of thermodynamic compatibility of plant tissue components. Various models of structural organization are currently being considered, focusing on various features (biological, chemical, structural) of wood substance. At the same time, the lignin-carbohydrate matrix is a three-component system of natural polymers: lignin-hemicelluloses-cellulose, the state of which is described by specific values of thermodynamic parameters that characterize the degree of its stability. The new approach proposed in this paper allows considering the plant lignin-carbohydrate matrix from the standpoint of physical chemistry of polymer as quasi-equilibrium, thermodynamically limited ordered system of biopolymers. Thus, the biochemical processes of synthesis and self-organization lead to the formation of a complex multicomponent system of wood substance, considered as a nanobiocomposite. This determines the need to study the applicability of the fundamental cycle "structure-functional nature-properties" from the standpoint of physical chemistry of biopolymers both for the investigation of plant objects and for the development of modern technologies for complex processing based on the principles of "green chemistry".
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.