Abstract

Molecular self-assembling systems derived from the clustering of acid and base molecules have been investigated by mass spectrometric analysis of clusters isolated from liquid droplets. N–H···N and O–H···N hydrogen-bonded acid–base systems were compared. When heteroaromatic N–H···N hydrogen-bonding acid–base systems, such as 7-azaindole dimer, the indole–quinoline pair, etc. were used as acid–base pairs, the clusters composed of equimolar acid and base molecules were generated. This means that the hydrogen-bonding acid–base complex, N–H···N, behaves like a single molecule in cluster formation. On the other hand, clustering of the aromatic O–H···N hydrogen-bonding systems, such as phenol–pyridine, phenol–pyrazine, etc., was controlled by the acid–base interaction determined by the pKa values, giving a multilayer structure for a relatively strong acid–base pair and a monolayer structure for a relatively weak acid–base pair. Molecular self-assembling systems containing hydrogen-bond donor and acceptor molecules have been systematically described here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.