Abstract
Determining how environmentally important trace metals are sequestered in soils at the molecular scale is critical to developing a solid scientific basis for maintaining soil quality and formulating effective remediation strategies. The speciation of Zn and Ni in ferromanganese nodules from loess soils of the Mississippi Basin was determined by a synergistic use of three noninvasive synchrotron-based techniques: X-ray microfluorescence (microXRF), X-ray microdiffraction (microXRD), and extended X-ray absorption fine structure spectroscopy (EXAFS). We show that Ni is distributed between goethite (alpha-FeOOH) and the manganese oxide lithiophorite, whereas Zn is bound to goethite, lithiophorite, phyllosilicates, and the manganese oxide birnessite. The selective association of Ni with only iron and manganese oxides is an explanation for its higher partitioning in nodules over the soil clay matrix reported from soils worldwide. This could also explain the observed enrichment of Ni in oceanic manganese nodules. The combination of these three techniques provides a new method for determining trace metal speciation in both natural and contaminated environmental materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.