Abstract
Recent research has shown the almost barrierless cycloaddition reaction of the carboxylic acid with one SO3 to form products with group of -OSO3H, which can form stable clusters with the nucleation precursors through hydrogen bonds (Mackenzie et al., Science 2015, 349, 58). Oxalic acid (OA), the simplest and prevalent dicarboxylic acid, was selected as an example to clarify the possibility to react with two SO3 sequentially and the nucleation potential of products. The results indicate that OA can sequentially react with two SO3 through low reaction barriers to form the primary product (oxalic sulfuric anhydride (OSA)) and the secondary product (oxalic disulfuric anhydride (ODSA)). Interactions between atmospheric nucleation precursors and OSA, ODSA, or OA are in the order of ODSA > OSA > OA through evaluating the stability of generated clusters by the topological, thermodynamics, and kinetic analysis, which implies generated products could be nucleation stabilizers with nucleation potential positively correlating with the number of -OSO3H. This reaction mechanism contributes to a comprehensive understanding of the reactivity of dicarboxylic acid in the polluted environment as well as the role of products in organosulfur chemistry and, to some extent, help to explain the missing sources of new particle formation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.