Abstract

Poly(lactic acid) (PLA), one of the pillars of the current overarching displacement trend switching from fossil- to natural-based polymers, is often used in association with polysaccharides to increase its mechanical properties. However, the use of PLA/polysaccharide composites is greatly hampered by their poor miscibility, whose underlying nature is still vastly unexplored. This work aims to shed light on the interactions of PLA and two representative polysaccharide molecules (cellulose and chitin) and reveal structure-property relationships from a fundamental perspective using atomistic molecular dynamics. Our computational strategy was able to reproduce key experimental mechanical properties of pure and/or composite materials, reveal a decrease in immiscibility in PLA/chitin compared to PLA/cellulose associations, assert PLA-oriented polysaccharide reorientations, and explore how less effective PLA-polysaccharide hydrogen bonds are related to the poor PLA/polysaccharide miscibility. The connection between the detailed chemical interactions and the composite behavior found in this work is beneficial to the discovery of new biodegradable and natural polymer composite mixtures that can provide needed performance characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.