Abstract
The molecular ruby [Cr(tpe) 2 ] 3+ and the tris(bipyridine) chromium(III) complex [Cr(dmcbpy) 3 ] 3+ as well as the tris(bipyrazine)ruthenium(II) complex [Ru(bpz) 3 ] 2+ were employed in the visible light-induced radical cation [4+2] cycloaddition (tpe = 1,1,1-tris(pyrid-2-yl)ethane, dmcbpy = 4,4′-dimethoxycarbonyl-2,2′-bipyridine, bpz = 2,2′-bipyrazine), while [Cr(ddpd) 2 ] 3+ serves as a control system (ddpd = N,N′-dimethyl-N,N′-dipyridin-2-ylpyridine-2,6-diamine). Along with an updated mechanistic proposal for the CrIII driven catalytic cycle based on redox chemistry, Stern-Volmer analyses, UV/Vis/NIR spectroscopic and nanosecond laser flash photolysis studies, we demonstrate that the very weakly absorbing photocatalyst [Cr(tpe) 2 ] 3+ outcompetes [Cr(dmcbpy) 3 ] 3+ and even [Ru(bpz) 3 ] 2+ in particular at low catalyst loadings, which appears contradictory at first sight. The high photostability, the reversible redoxchemistry and the very long excited state lifetime account for the exceptional performance and even reusability of [Cr(tpe) 2 ] 3+ in this photoredox catalytic system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.