Abstract

Numerous formulation processes of materials involve a drying step, during which evaporation of a solvent from a multicomponent liquid mixture, often confined in a thin film or in a droplet, leads to concentration and assembly of nonvolatile compounds. While the basic phenomena ruling evaporation dynamics are known, precise modeling of practical situations is hindered by the lack of tools for local and time-resolved mapping of concentration fields in such confined systems. In this article, the use of fluorescence lifetime imaging microscopy and of fluorescent molecular rotors is introduced as a versatile, in situ, and quantitative method to map viscosity and concentration fields in confined, evaporating liquids. More precisely, the cases of drying of a suspended liquid film and of a sessile droplet of mixtures of fructose and water are investigated. Measured viscosity and concentration fields allow characterization of drying dynamics, in agreement with simple modeling of the evaporation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.