Abstract

We demonstrate the use of fluorescent molecular rotors as probes for detecting biomolecular interactions, specifically peptide-protein interactions. Molecular rotors undergo twisted intramolecular charge transfer upon irradiation, relax via the nonradiative torsional relaxation pathway, and have been typically used as viscosity probes. Their utility as a tool for detecting specific biomolecular interactions has not been explored. Using the well characterized p53-Mdm2 interaction as a model system, we designed a 9-(2-carboxy-2-cyanovinyl) julolidine-based p53 peptide reporter, JP1-R, which fluoresces conditionally only upon Mdm2 binding. The reporter was used in a rapid, homogeneous assay to screen a fragment library for antagonists of the p53-Mdm2 interaction, and several inhibitors were identified. Subsequent validation of these hits using established secondary assays suggests increased sensitivity afforded by JP1-R. The fluorescence of molecular rotors contingent upon target binding makes them a versatile tool for detecting specific biomolecular interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.