Abstract

The field of synthetic molecular machines has quickly evolved in recent years, growing from a fundamental curiosity to a highly active field of chemistry. Many different applications are being explored in areas such as catalysis, self-assembled and nanostructured materials, and molecular electronics. Rotary molecular motors hold great promise for achieving dynamic control of molecular functions as well as for powering nanoscale devices. However, for these motors to reach their full potential, many challenges still need to be addressed. In this paper we focus on the design principles of rotary motors featuring a double-bond axle and discuss the major challenges that are ahead of us. Although great progress has been made, further design improvements, for example in terms of efficiency, energy input, and environmental adaptability, will be crucial to fully exploit the opportunities that these rotary motors offer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.