Abstract

ABSTRACTLong‐chain branched polypropylene was prepared using reaction in the molten state in the presence of glycerol and a linear polypropylene functionalized with maleic anhydride (PPg). The concentration of glycerol in the melt was varied in the range from 0.1 to 5 wt % to obtain different levels of branching. FTIR spectroscopy results indicate that the OH groups of glycerol react with the anhydrides on the PPg chains giving place to ester groups. The presence of long‐chain branches in the molecular structure of PPg was confirmed using multiple‐detection size‐exclusion chromatography and rheology. These techniques demonstrate that the level of branching increases with glycerol concentration and that the modification of PPg produces materials with a bimodal distribution of polymer species. Moreover, some of the highly modified materials display gel‐like behavior. The materials also display thermo‐rheological complexity and enhanced activation energy at low frequencies. The crystallization study shows that both the anhydride groups in PPg and the LCBs have opposite nucleating effects. PPg presents the largest activation energy of crystallization and its value decreases with the concentration of glycerol for a given level of crystallization. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40357.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.