Abstract

AbstractMachine learning (ML) methods enable computers to address problems by learning from existing data. Such applications are becoming commonplace in molecular sciences. Interest in applying ML techniques across chemical compound space, from predicting properties to designing molecules and materials is in the surge. Especially, ML models have started to accelerate computational chemistry, and are often as accurate as state‐of‐the‐art electronic/atomistic models. Being an integral part of the ML architecture, representation of a molecular entity, uniquely encoded, plays a crucial role to what extent an ML model would be accurately predicting the desired property. This review aims to demonstrate a hierarchy of representations which has been introduced, to capture all degrees of freedom of a molecule or an atom the best, to map the quantum mechanical properties. We discuss their diverse applications how they have been instrumental in harnessing the growing field of ML accelerated computational modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.