Abstract

1. The maintenance of skeletal muscle mass is determined by a fine balance between protein synthesis and protein degradation. Skeletal mass is increased when there is a net gain in protein synthesis, which can occur following progressive exercise training. In contrast, skeletal muscle mass is lost when degradation occurs more rapidly than synthesis and is observed in numerous conditions, including neuromuscular disease, chronic disease, ageing, as well as following limb immobilization or prolonged bed rest due to injury or trauma. 2. Understanding the molecular pathways that regulate skeletal muscle protein synthesis and degradation is vital for identifying potential therapeutic targets that can attenuate muscle atrophy during disease and disuse. 3. The regulation of skeletal mass is complex and involves the precise coordination of several intracellular signalling pathways. The present review focuses on the role and regulation of pathways involving Akt, atrogin-1 and muscle ring finger-1 (MuRF1; atrogenes), peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) and striated activator of Rho signalling (STARS), with exercise and disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.