Abstract
Zeolite crystals were attached to the gold electrodes of quartz crystal microbalances (QCM). Monolayers of thiol-alkoxysilanes on the gold surface served as interfacial layers for the subsequent adhesion of the zeolite crystals to the QCM. The process of anchoring the zeolite crystals via the thiol-silane monolayers was studied by reflection adsorption infrared (IR) spectroscopy, contact angle, and scanning electron microscopy (SEM). The siloxane linkages between the microporous zeolite crystals and the terminal cross-linked polysiloxane groups of the interfacial monolayer play an important role in enhancing the packing density of microporous crystals and the thermal stability (up to at least 350 {degrees}C) of the film on the gold surface. Dynamic sorption isotherms of organic vapors and nitrogen as well as the transient sorption behavior of organic vapor pulses were studied to characterize the zeolite-coated QCMs. The resonance frequency response of zeolite-coated QCMs to vapor pulses could be increased up to 500-fold compared to the bare sensor. The regular micropores (0.3-0.75 nm) of the QCM-attached zeolite crystals were found to efficiently control molecular access into the coating. Selectivity of the frequency response in excess of 100:1 toward molecules of different size and/or shape could be demonstrated. The kinetics of vapor desorption frommore » the zeolite layers are strongly dependent on the adsorbate/zeolite combination, thus providing an additional capability for molecular recognition. 33 refs., 11 figs., 2 tabs.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.