Abstract

The enantioselectivity of β-cyclodextrin (β-CD) towards L- and D-N-acetyltryptophan (NAcTrp) has been studied in aqueous solution and the crystalline state. NMR studies in solution show that β-CD forms complexes of very similar but not identical geometry with both L- and D-NAcTrp and exhibits stronger binding with L-NAcTrp. In the crystalline state, only β-CD–L-NAcTrp crystallizes readily from aqueous solutions as a dimeric complex (two hosts enclosing two guest molecules). In contrast, crystals of the complex β-CD–D-NAcTrp were never obtained, although numerous conditions were tried. In aqueous solution, the orientation of the guest in both complexes is different than in the β-CD–L-NAcTrp complex in the crystal. Overall, the study shows that subtle differences observed between the β-CD–L,D-NAcTrp complexes in aqueous solution are magnified at the onset of crystallization, as a consequence of accumulation of many soft host–guest interactions and of the imposed crystallographic order, thus resulting in very dissimilar propensity of each enantiomer to produce crystals with β-CD.

Highlights

  • Cyclodextrins (CDs) are cyclic, water-soluble carbohydrates with a rather non-polar cavity that can host a variety of organic molecules and form inclusion complexes [1]

  • The study shows that subtle differences observed between the β-CD–L,D-NAcTrp complexes in aqueous solution are magnified at the onset of crystallization, as a consequence of accumulation of many soft host–guest interactions and of the imposed crystallographic order, resulting in very dissimilar propensity of each enantiomer to produce crystals with β-CD

  • We report on the inclusion of the Land D-enantiomers of N-acetyltryptophan (NAcTrp) in β-CD (Scheme 1) in an effort to contribute to the study of chiral recognition of amino acid derivatives by CDs in the crystalline state and in solution

Read more

Summary

Introduction

Cyclodextrins (CDs) are cyclic, water-soluble carbohydrates with a rather non-polar cavity that can host a variety of organic molecules (guests) and form inclusion complexes [1]. The guest molecules may be completely or partly enclosed inside the cavity depending on their size and the CD macrocycle’s dimensions. The host–guest interactions established in the cavity are of van der Waals type, whereas between parts of the guest extending out of the cavity and the host’s hydroxy groups are H-bonding interactions and/or of electrostatic nature. CDs have been studied and used for the enhancement of solubility, bioavailability and stability of drugs [2,3,4,5]. Being oligomers of α-D-glucopyranose, CDs possess an intrinsic.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.