Abstract

Cold acclimatized organisms produce antifreeze proteins that prevent ice growth and recrystallization at subfreezing conditions. Flatness and rigidity of the ice-binding sites of antifreeze proteins are considered key for their recognition of ice. However, the most potent synthetic ice recrystallization inhibitor (IRI) found to date is poly(vinyl alcohol) (PVA), a fully flexible molecule. The ability to tune the architecture and functionalization of PVA makes it a promising candidate to replace antifreeze proteins in industrial applications ranging from cryopreservation of organs to deicing of turbine blades. However, an understanding of how does PVA recognize ice remains elusive, hampering the design of more effective IRIs. Here we use large-scale molecular simulations to elucidate the mechanism by which PVA recognizes ice. We find that the polymer selectively binds to the prismatic faces of ice through a cooperative zipper mechanism. The binding is driven by hydrogen bonding, facilitated by distance mat...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.