Abstract

Multimode sensing was proposed for molecular screening and recognition of HER-1 in whole blood. The tools used for molecular recognition were platforms based on nanostructured materials such as the complex of Mn(III) with meso-tetra (4-carboxyphenyl) porphyrin, and maltodextrin (dextrose equivalence between 4 and 7), immobilized in diamond paste, graphite paste or C60 fullerene paste. The identification of HER-1 in whole-blood samples, at molecular level, is performed using stochastic mode and is followed by the quantification of it using stochastic and differential pulse voltammetry modes. HER-1 can be identified in the concentration range between 280 fg/ml and 4.86 ng/ml using stochastic mode, this making possible the early detection of cancers such as gastrointestinal, pancreatic and lung cancers. The recovery tests performed using whole-blood samples proved that the platforms can be used for identification and quantification of HER-1 with high sensitivity and reliability in such samples, these making them good molecular screening tools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call