Abstract

The mechanism by which proteins recognize and bind the post-transcriptional modifications of RNAs is unknown, yet these interactions play important functions in biology. Atomistic molecular dynamics simulations were performed to examine the folding of the model peptide chain –RVTHHAFLGAHRTVG– and the complex formed by the folded peptide with the native anticodon stem and loop of the human tRNALys3 (hASLLys3) in order to explore the binding mechanism. By analyzing and comparing two folded conformations of this peptide obtained from the folding simulation, we found that the van der Waals (VDW) energy is necessary for the thermal stability of the peptide, and the charge–charge (ELE + EGB) energy is crucial for determining the three-dimensional folded structure of the peptide backbone. Subsequently, two conformations of the peptide were employed to investigate their binding behaviors to hASLLys3. The metastable folded peptide was found to bind to hASLLys3 much easier than the stable folded peptide in the binding simulations. An energetic analysis reveals that the VDW energy favors the binding, whereas the ELE + EGB energies disfavor the binding. Arginines on the peptide preferentially attract the phosphate backbone via the inter-chain ELE + EGB interaction, significantly contributing to the binding affinity. The hydrophobic phenylalanine interacts with the anticodon loop of hASLLys3 via the inter-chain VDW interaction, significantly contributing to the binding specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.