Abstract
Recent advances in the understanding of the molecular recognition events occurring during the assembly of procollagen during biosynthesis have come from the use of a semi-permeabilized cell-system that reconstitutes the initial steps of chain assembly as they would occur in the endoplasmic reticulum of an intact cell. This has enabled a number of key questions concerning the molecular determinants of procollagen assembly to be addressed. In particular, the recognition events underlying the initial association of individual procollagen chains have been investigated, resulting in the identification of the key residues involved within the C-propeptide of fibrillar collagens. Similarly, the role of inter-chain disulfide bond formation in chain recognition and assembly has been investigated, along with the role of the C-propeptide, C-telopeptide and proline hydroxylation in helix nucleation, alignment and propagation. The results from these studies point to a two-stage recognition event, i.e., association of the chains driven by residues within the C-propeptide followed by nucleation and alignment of the helix driven mainly by sequences present at the C-terminal end of the triple helical domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Matrix biology : journal of the International Society for Matrix Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.