Abstract

The density of targeting moieties in a nanoparticle-based gene-delivery system has been shown to play a fundamental role in its vectoring performance. Here, molecular recognition force spectroscopy is proposed as a novel screening tool to optimize the density of targeting moieties of functionalized nanoparticles towards attaining cell-specific interaction. By tailoring the nanoparticle formulation, the unbinding event probability between nanoparticles tethered to an atomic force microscopy tip and neuronal cells is directly correlated to the nanoparticle gene-vectoring capacity. Additionally, new insights into protein-receptor interaction are revealed. This novel approach opens new avenues in the field of nanomedicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.