Abstract

This article highlights the emerging use of the interactions of radical π-dimers to drive both molecular recognition and switching processes within supramolecular systems and mechanically interlocked molecular architectures. The enhanced stability experienced by dimers of radical cation species when encapsulated, as compared to when they are free in solution, is driving their useful incorporation into functional systems. The redox stimulation used in the production of radical cation species provides the ideal trigger for molecular switching events. Moreover, the nature and strength of the radical dimerization events introduces a completely novel recognition motif within supramolecular and mechanically interlocked molecular systems, complementing well-established techniques and enabling new research opportunities to blossom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.