Abstract

Mitochondrial monooxygenase systems are involved in the biosynthesis of glucocorticoids, mineralocorticoids, bile acids, and 1,25-dihydroxyvitamin D. The reactions are catalyzed by specific P450 enzymes that receive reducing equivalents via NADPH-ferredoxin oxidoreductase (adrenodoxin reductase) and ferredoxin (adrenodoxin). Although the three-dimensional structures of the individual components have not yet been solved, methods of expressing recombinant forms of these enzymes in Escherichia coli have allowed the use of site-directed mutagenesis to investigate the roles of specific amino acids in protein binding interactions, electron transfer, and catalysis. These studies have identified key charged residues in NADPH-ferredoxin oxidoreductase, ferredoxin, and P450scc, which are involved in electrostatic interactions critical for recognition, high-affinity binding, and electron transfer. The finding that the binding sites on ferredoxin for NADPH-ferredoxin oxidoreductase and P450 show significant overlap supports the proposed function for ferredoxin as a mobile electron shuttle between the reductase and P450 enzymes and is consistent with ferredoxin's role in serving multiple P450 isoforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.