Abstract

Crown ethers have the remarkable property of recognizing and binding specific metal cations in complex mixtures. We propose to combine molecular recognition with molecular electric conductance. The question we address is: can the event of binding a cation be sensed by a change in conductance? Specifically, we study a short molecular wire (MW) containing a crown-6 molecule connected via sulfur atoms to two gold atomic wires acting as metallic leads. Upon binding a cation, the density of states of the system is only slightly affected. This reflects the fact that the cation binding is largely electrostatic in nature and is accompanied by little electronic reorganization. Yet, the cationic binding does significantly lower conductance. We also identify strong interference affecting the conductance. A striking feature is the insensitivity of conductance to the type of ligand with the exception of the proton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.