Abstract

The binding and molecular recognition between α-chain of human complement C3b (α-chain of C3b) and human plasminogen Kringle 5 (Kringle 5) were studied and explored by frontal chromatography and dynamics simulation in the combination of bio-specific technologies. The specific interaction between the α-chain of C3b and Kringle 5 was initially confirmed by ligand blot and ELISA (Kd = 4.243×10−6 L/mol). Furthermore, the binding determination conducted via frontal chromatography showed that the presence of a single binding site between them, with the binding constant of 2.98 × 105 L/mol. Then the molecular recognition by dynamics simulation and molecular docking showed that there were 9 and 13 amino acid residues respective in the Kringle 5 and α-chain of C3b directly implicated in the binding and the main stabilizing forces were electrostatic force (-55.99 ± 11.82 kcal/mol) and Van der Waals forces (-42.70 ± 3.45 kcal/mol). Additionally, a loop structure (65–71) in Kringle 5 underwent a conformational change from a random structure to an α-helix and a loop structure (417–425) in α-chain of C3b was closer to the molecular center, both of them were more conducive to the binding between them. Meanwhile, the involvement of the lysine binding site of Kringle 5 played an important role in the binding process. In addition, the erythrocyte-antibody complement rosette assay substantiated that the presence of Kringle 5 hindered the transportation of α-chain of C3b to antigen-antibody complex in a dose-dependent manner. These findings collectively indicated that the α-chain of C3b is very likely a receptor protein for Kringle 5, which provides a methodology for other similar investigations and valuable insights into expansion of the pharmacological effects and potential application of Kringle 5 in immune-related diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call