Abstract

We provide a way of generating and observing molecular quantum gyroscopic motion that resembles gyroscopic motion of classical rotors. After producing a nonspreading rotational wavepacket called a cogwheel state, one can generate a gyroscopic precession motion by applying an external magnetic field interacting through a rotational magnetic dipole moment. The quantum rotors, realized with linear nonparamagnetic ionic molecules trapped in an ion trap, can keep their gyroscopic motion for a long time in a collectively synchronized fashion. A Coulomb-explosion technique is suggested to observe the gyroscopic motion. Despite limited molecular species, the observation of the gyroscopic motion can be adopted as a method to measure rotational g factors of molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call