Abstract

Variations in herb dosage due to species adulteration and dosing inaccuracies can substantially affect clinical safety and efficacy. Accurate species quantification remains challenging, as current methods often yield inconsistent results. This study introduces a novel pyrosequencing-based technique, termed herb molecular quantification (Herb-Q), designed to precisely quantify herbal products. We evaluated its effectiveness using Pinellia ternata and five of its adulterants. Initially, we assessed commonly used DNA barcodes with sequences from a public database, identifying two candidate regions, Maturase K (matK) and internal transcribed spacer 2 (ITS2), for screening specific single nucleotide polymorphism (SNP) loci, allowing for species-specific identification. These loci were validated by amplifying and sequencing genomic material from collected samples. Our validation studies showed that Herb-Q demonstrated excellent linearity, accuracy, repeatability, and detection limits. We established quantitative standard curves with high R2 values (> 0.99) to enable precise species quantification, which were combined with external standards to provide clear and accurate visual quantification results. The average bias in quantifying the tuber of P. ternata was 2.38%, confirming that Herb-Q can accurately identify and quantify herbal product constituents. Moreover, the entire quantification process took less than 4 h. This study presents a novel, rapid method for accurately quantifying species in herbal products and advances the application of DNA barcoding from species identification to quantitative detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.