Abstract

The hydrodynamic and conformational properties of molecules of poly(N,N-diallyl-N,N-dimethylammonium chloride) and N,N-diallyl-N,N-dimethylammonium chloride-maleic acid copolymers of different compositions in solutions with various ionic-strength and pH values, as well as of the polyelectrolyte complex based on the copolymer with dodecyl sulfate anions in chloroform, are studied. For poly(N,N-diallyl-N,N-dimethylammonium chloride) molecules in a 1 M NaCl solution, the Kuhn segment length and the hydrodynamic diameter of the chain are estimated as A = 3.9 nm and d = 0.48 nm, respectively. In acidic solutions with pH 3.5, the copolymers demonstrate behavior typical for polyelectrolytes. In an alkaline solution with pH 13, when 1 M NaCl is added to the solution of the copolymer containing 29 mol % maleic acid units, there is an antipolyelectrolyte effect that manifests itself as an increase in the intrinsic viscosity of the copolymer and in the hydrodynamic radius of its molecules. It is found that an increase in the fraction of maleic acid units in the copolymer from 12 to 42 mol % brings about a reduction in the equilibrium rigidity of its macromolecules from 4.1 to 2.2 nm. The equilibrium rigidity of polyelectrolyte-complex molecules is higher than that of initial copolymer molecules owing to steric interactions arising between the aliphatic chains of dodecyl sulfate anions. In an electric field, the molecules of the complex are oriented owing to the induced dipole moment resulting from the displacement of dodecyl sulfate anions along the chain contour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.