Abstract
Stratum corneum lipids are relatively complex, and there is little detailed understanding of their chemical and physical properties at the molecular level. Large unilamellar vesicles (LUVs) with lipid compositions similar to those of stratum corneum were prepared at pH 9 with commercially available lipids. This system was used as a model system for molecular studies of stratum corneum lipids. LUVs were chosen as the model system as they are comparatively more stable and can be characterized more quantitatively in terms of lipid concentration, surface area, and volume than model systems such as lipid mixture suspensions, lipid films, and small unilamellar vesicles. Results from freeze-fracture and cryo electron microscopy studies of our LUVs showed spherical vesicles. Quasi-elastic light scattering measurements revealed a narrow size distribution, centering around 119 nm. At room temperature, the LUVs were stable for several weeks at pH 9 and for more than 15 h but less than 24 h at pH 6. Differential scanning calorimetry measurements indicated broad endothermic transitions centered near 60-65 degrees C, closely matching the transition temperature reported for stratum corneum lipid extracts. Spin probes, 5-doxylstearic acid and 12-doxylstearic acid, were used for electron paramagnetic resonance (EPR) studies of the molecular dynamics of the lipids. EPR results indicated more restricted motion near the polar headgroup region than near the center of the alkyl chain region. Motional profiles of the spin labels near the polar headgroup and within the alkyl chain region in the LUVs were obtained as a function of temperature, ranging from 25 to 90 degrees C. We also found that the partitioning between the lipid and aqueous phases for each spin probe was temperature dependent and was generally correlated with phase transitions observed by differential scanning calorimetry and with alkyl chain mobility observed by EPR. Thus, this LUV system is well suited for additional molecular studies under different experimental conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.