Abstract
Acute myeloid leukemia (AML) with initial hyperleukocytosis is associated with high early mortality and a poor prognosis. The aims of this study were to delineate the underlying molecular landscape in the largest cytogenetic risk group, cytogenetically normal acute myeloid leukemia (CN-AML), and to assess the prognostic relevance of recurrent mutations in the context of hyperleukocytosis and clinical risk factors. The authors performed a targeted sequencing of 49 recurrently mutated genes in 56 patients with newly diagnosed CN-AML and initial hyperleukocytosis of ≥100G/L treated in the AMLCG99 study. The median number of mutated genes per patient was 5. The most common mutations occurred in FLT3 (73%), NPM1 (75%), and TET2 (45%). The predominant pathways affected by mutations were signaling (84% of patients), epigenetic modifiers (75% of patients), and nuclear transport (NPM1; 75%) of patients. AML with hyperleukocytosis was enriched for molecular subtypes that negatively affected the prognosis, including a high percentage of patients presenting with co-occurring mutations in signaling and epigenetic modifiers such as FLT3 internal tandem duplications and TET2 mutations. Despite these unique molecular features, clinical risk factors, including high white blood count, hemoglobin level, and lactate dehydrogenase level at baseline, remained the predictors for overall survival and relapse-free survival in hyperleukocytotic CN-AML.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.