Abstract

BackgroundIndoor microbial contamination due to excess moisture is an important contributor to human illness in both residential and occupational settings. However, the census of microorganisms in the indoor environment is limited by the use of selective, culture-based detection techniques. By using clone library sequencing of full-length internal transcribed spacer region combined with quantitative polymerase chain reaction (qPCR) for 69 fungal species or assay groups and cultivation, we have been able to generate a more comprehensive description of the total indoor mycoflora. Using this suite of methods, we assessed the impact of moisture damage on the fungal community composition of settled dust and building material samples (n = 8 and 16, correspondingly). Water-damaged buildings (n = 2) were examined pre- and post- remediation, and compared with undamaged reference buildings (n = 2).ResultsCulture-dependent and independent methods were consistent in the dominant fungal taxa in dust, but sequencing revealed a five to ten times higher diversity at the genus level than culture or qPCR. Previously unknown, verified fungal phylotypes were detected in dust, accounting for 12% of all diversity. Fungal diversity, especially within classes Dothideomycetes and Agaricomycetes tended to be higher in the water damaged buildings. Fungal phylotypes detected in building materials were present in dust samples, but their proportion of total fungi was similar for damaged and reference buildings. The quantitative correlation between clone library phylotype frequencies and qPCR counts was moderate (r = 0.59, p < 0.01).ConclusionsWe examined a small number of target buildings and found indications of elevated fungal diversity associated with water damage. Some of the fungi in dust were attributable to building growth, but more information on the material-associated communities is needed in order to understand the dynamics of microbial communities between building structures and dust. The sequencing-based method proved indispensable for describing the true fungal diversity in indoor environments. However, making conclusions concerning the effect of building conditions on building mycobiota using this methodology was complicated by the wide natural diversity in the dust samples, the incomplete knowledge of material-associated fungi fungi and the semiquantitative nature of sequencing based methods.

Highlights

  • Indoor microbial contamination due to excess moisture is an important contributor to human illness in both residential and occupational settings

  • The present study is the first to assess the effect of water damage and its remediation on indoor mycobiota using universal culture-independent community characterization methods, and the first study to compare nucITS sequencing results with an extensive panel of mold specific quantitative polymerase chain reaction (qPCR) assays

  • We found indications of elevated fungal diversity, as well as the presence of fungi attributable to building growth to be associated with water damage

Read more

Summary

Introduction

Indoor microbial contamination due to excess moisture is an important contributor to human illness in both residential and occupational settings. The agents that contribute to the development of the reported buildingrelated health effects are still only partially understood, and no internationally accepted guidelines are available for monitoring the success of mold remediation [13]. This is due largely to the complex and compound nature of indoor exposures and the varying extent of population susceptibility, further complicated by traditional methodological deficiencies in the identification and enumeration of biological agents

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call