7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.gene.2015.06.007
Copy DOIJournal: Gene | Publication Date: Jun 5, 2015 |
Citations: 15 |
The thioredoxin (Trx) system plays a significant role in cellular antioxidative defense by dismutating the surpluses of reactive oxygen species. Thus, the role of thioredoxin reductase (TrxR) cannot be ignored, owing to its participation in initiating the Trx enzyme cascade. Here, we report the identification and molecular characterization of a teleostean TrxR (RbTrxR-3) ortholog that showed high similarity with the TrxR-3 isoforms of other vertebrates. The complete RbTrxR-3 coding sequence comprised 1800 nucleotides, encoding a 600-amino acid protein with a predicted molecular mass of ~66kDa. RbTrxR-3 consisted of 16 exons separated by 15 introns and had a total length of 12,658bp. In silico analysis of the RbTrxR-3 protein sequence revealed that it possesses typical TrxR domain architecture. Moreover, using multiple sequence alignment and pairwise sequence alignment strategies, we showed that RbTrxR-3 has high overall sequence similarity to other teleostean TrxR-3 proteins, including highly conserved active site residues. Phylogenetic reconstruction of RbTrxR-3 affirmed its close evolutionary relationship with fish TrxR-3 orthologs, as indicated by its clustering pattern. RbTrxR-3 transcriptional analysis, performed using quantitative polymerase chain reaction (qPCR), showed that RbTrxR-3 was ubiquitously distributed, with the highest level of mRNA expression in the blood, followed by the gill, and liver. Live bacterial and viral stimuli triggered the modulation of RbTrxR-3 basal transcription in liver tissues that correlated temporally with that of its putative substrate, rock bream thioredoxin1 under the same conditions of pathogenic stress. Finally, resembling the typical function of TrxR protein, purified recombinant RbTrxR-3 showed detectable dose-dependent thiol reductase activity against 5,5′-dithiobis (2-nitrobenzoic) acid. Taken together, these results suggest that RbTrxR-3 plays a role in the host Trx system under conditions of oxidative and pathogenic stress.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.