Abstract

Determination of the specific type of thyroid cancer is crucial for the prognosis and selection of treatment of this malignancy. However, in some cases appropriate classification is not possible based on histopathological features only, and it might be supported by molecular biomarkers. Here we aimed to characterize molecular profiles of different thyroid malignancies using mass spectrometry imaging (MSI) which enables the direct annotation of molecular features with morphological pictures of an analyzed tissue. Fifteen formalin-fixed paraffin-embedded tissue specimens corresponding to five major types of thyroid cancer were analyzed by MALDI-MSI after in-situ trypsin digestion, and the possibility of classification based on the results of unsupervised segmentation of MALDI images was tested. Novel method of semi-supervised detection of the cancer region of interest (ROI) was implemented. We found strong separation of medullary cancer from malignancies derived from thyroid epithelium, and separation of anaplastic cancer from differentiated cancers. Reliable classification of medullary and anaplastic cancers using an approach based on automated detection of cancer ROI was validated with independent samples. Moreover, extraction of spectra from tumor areas allowed the detection of molecular components that differentiated follicular cancer and two variants of papillary cancer (classical and follicular). We concluded that MALDI-MSI approach is a promising strategy in the search for biomarkers supporting classification of thyroid malignant tumors. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.