Abstract

Woolen textile industry produces enormous wastewater (WTIW) with high pollution loads, and needs to be treated by wastewater treatment stations (WWTS) before centralized treatment. However, WTIW effluent still contains many biorefractory and toxic substances; thus, comprehensive understandings of dissolved organic matter (DOM) of WTIW and its transformation are essential. In this study, total quantity indices, size exclusion chromatography, spectral methods, and Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) were used for comprehensively characterizing DOM and its transformation during full-scale treatments, including influent, regulation pool (RP), flotation pool (FP), up-flow anaerobic sludge bed (UA), anaerobic/oxic (AO) and effluent. DOM in influent featured a large molecular weight (5–17 kDa), toxicity (0.201 HgCl2 mg/L), and a protein content of 338 mg C/L. FP largely removed 5–17 kDa DOM with the formation of 0.45–5 kDa DOM. UA and AO removed 698 and 2042 chemicals, respectively, which were primarily saturated components (H/C > 1.5); however, both UA and AO contributed to the formation of 741 and 1378 stable chemicals, respectively. Good correlations were found among water quality indices and spectral/molecular indices. Our study reveals the molecular composition and transformation of WTIW DOM during treatments and encourages the optimization of the employed processes in WWTS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call