Abstract

Copper sulfides have gained significant attention as alternative electrodes for rechargeable batteries. A simple and easily scalable synthetic pathway to access these materials is highly desirable. This paper describes the facile synthesis of metal-rich digenite Cu1.8S nanocrystals from a structurally characterized new single-source molecular precursor in various high boiling solvents of varied polarity. The as-prepared nanostructures were thoroughly characterized by PXRD, Raman spectroscopy, EDS, XPS, electron microscopy techniques and diffuse reflectance spectroscopy to understand the crystal structure, phase purity, elemental composition, morphology and band gap. It was found that the reaction solvent has a profound role on their crystallite size, morphology and band gap, however the crystal structure and phase purity remained unaffected. Pristine Cu1.8S nanostructures have been employed as an anode material in lithium-ion batteries (LIBs). The cell delivers a high initial charge capacity of ∼462 mA h g-1 and retains a capacity of 240 mA h g-1 even after 300 cycles at 0.1 A g-1. DFT calculations revealed that multi-size polyhedron layers in the direction perpendicular to the two Li movement channels aid in the sustainable uptake of Li atoms with controlled volume expansion. The structure-mediated flexibility of the metal-rich Cu1.8S lattice during lithiation permits high cyclability with reasonable retention of capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.