Abstract

Inspired by experimental observations of Pt(111) surfaces reconstruction at the Pt/graphene (Gr) interfaces with ordered vacancy networks in the outermost Pt layer [e.g., Otero, G., et al. Phys. Rev. Lett. 2010, 105, 216102 ], the mechanism of the surface reconstruction is investigated by van der Waals corrected density functional theory in combination with particle-swarm optimization algorithm and ab initio atomistic thermodynamics. Our global structural search finds a more stable reconstructed structure than that which was reported before. With correction for vacancy formation energy, we demonstrate that the experimental observed surface reconstruction occurred at the earlier stages of graphene formation: (1) reconstruction occurred when C60 adsorption (before decomposition to form graphene) for C60 precursor or (2) reconstruction occurred when there were (partial) hydrogens remain in the hydrogenated precursors of C2H4 and planar C60H30. The reason is attributed to the fact that the energy gain, from t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.