Abstract

To illustrate phylogeography of red deer (Cervus elaphus) populations of Xinjiang, we determined their mitochondrial DNA (mtDNA) control region sequences, and then investigated geographic variations and phylogenetic relationships between Xinjiang populations and other populations from Asia, Europe, and North America. The C. elaphus mtDNA control region shared different copy numbers of tandem repeats of 38 to 43-bp motifs which clearly distinguished the Western lineage from the Eastern lineage of this species in Eurasia. The western lineage comprised the Tarim populations from southern Xinjiang and the European populations, all of which had four copies of the motifs. By contrast, the Eastern lineage consisted of populations from northern Xinjiang (Tianshan and Altai Mountains), other Asian areas (Alashan, Gansu, Tibet, Mongolia, and northeastern China), and North America, all of which shared six copies of the motifs. MtDNA phylogenetic trees showed that there are two major clusters of haplotypes which referred to the Western and Eastern lineages, and that subgroupings of haplotypes in each cluster were congruent with their geographic distributions. The present study revealed that a boundary separating the Western lineage from the Eastern lineage occurs between Tarim Basin and Tianshan Mountains in Xinjiang. Meanwhile, North American populations were genetically closer to those of northern Xinjiang, northeastern China, and Mongolia, supporting that C. elaphus immigrated from northeastern Eurasia to North America through the glacier-induced land-bridge (Beringia) which had formed between the two continents after Late Pleistocene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call