Abstract

Recent molecular approaches to taxonomy have led to a steady increase in the identification of cryptic species. Within the Etheriidae, the species Etheria elliptica (freshwater oyster) is widespread and common and exists in most of the major African drainages. Within the African freshwater ecosystems, there are major threats to biodiversity and cryptic species complicate conservation strategies; unknown species exist and no conservation status has been assigned. Our objective here was to determine if E. elliptica from several locations in the Congo drainage are correctly classified as representing a single species. We analysed the genetic diversity at two mitochondrial loci (COI and 16S) and two nuclear loci (H3 and 28S), and estimated evolutionary relationships using phylogenetic and DNA barcoding techniques. Bayesian inference yielded three cryptic species of Etheria, and mismatch analysis revealed discrete differences between the cryptic species. We identified three cryptic species within these collections, and evidence indicates that the third species may resolve further with more sampling. In conclusion, the taxonomic history of E. elliptica makes finding cryptic species unsurprising. However, molecular studies such as this may finally help to resolve the number of species within this genus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call