Abstract

We use a multigene data set (the mitochondrial locus and nine nuclear gene regions) to test phylogenetic relationships in the South American "lava lizards" (genus Microlophus) and describe a strategy for aligning noncoding sequences that accounts for differences in tempo and class of mutational events. We focus on seven nuclear introns that vary in size and frequency of multibase length mutations (i.e., indels) and present a manual alignment strategy that incorporates insertions and deletions (indels) for each intron. Our method is based on mechanistic explanations of intron evolution that does not require a guide tree. We also use a progressive alignment algorithm (Probabilistic Alignment Kit; PRANK) and distinguishes insertions from deletions and avoids the "gapcost" conundrum. We describe an approach to selecting a guide tree purged of ambiguously aligned regions and use this to refine PRANK performance. We show that although manual alignment is successful in finding repeat motifs and the most obvious indels, some regions can only be subjectively aligned, and there are limits to the size and complexity of a data matrix for which this approach can be taken. PRANK alignments identified more parsimony-informative indels while simultaneously increasing nucleotide identity in conserved sequence blocks flanking the indel regions. When comparing manual and PRANK with two widely used methods (CLUSTAL, MUSCLE) for the alignment of the most length-variable intron, only PRANK recovered a tree congruent at deeper nodes with the combined data tree inferred from all nuclear gene regions. We take this concordance as an objective function of alignment quality and present a strongly supported phylogenetic hypothesis for Microlophus relationships. From this hypothesis we show that (1) a coded indel data partition derived from the PRANK alignment contributed significantly to nodal support and (2) the indel data set permitted detection of significant conflict between mitochondrial and nuclear data partitions, which we hypothesize arose from secondary contact of distantly related taxa, followed by hybridization and mtDNA introgression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.