Abstract

Time-resolved pump–probe and two-dimensional spectroscopy are widely used to study ultrafast chemical and biological processes in solutions. However, the corresponding signals at long times can be contaminated by molecular photothermal effects, which are caused by the nonradiative heat dissipation of photoexcited molecules to the surroundings. Additionally, molecular diffusion affects the transient spectroscopic signals because photoexcited molecules can diffuse away from the pump and probe beam focuses. Recently, a theoretical description of molecular photothermal effects on time-resolved IR spectroscopy was reported. In this work, I consider the molecular photothermal process, molecular diffusion, and sample flow to develop a generalized theoretical description of time-resolved spectroscopy. The present work can be used to interpret time-resolved spectroscopic signals of electronic or vibrational chromophores and understand the rate and mechanisms of the conversion of high-frequency molecular electronic and vibrational energy to solvent kinetic energy in condensed phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.