Abstract
Histological evaluation of endometrium has been the gold standard for clinical diagnosis and management of women with endometrial disorders. However, several recent studies have questioned the accuracy and utility of such evaluation, mainly because of significant intra- and interobserver variations in histological interpretation. To examine the possibility that biochemical or molecular signatures of endometrium may prove to be more useful, we have investigated whole-genome molecular phenotyping (54,600 genes and expressed sequence tags) of this tissue sampled across the cycle in 28 normo-ovulatory women, using high-density oligonucleotide microarrays. Unsupervised principal component analysis of all samples revealed that samples self-cluster into four groups consistent with histological phenotypes of proliferative (PE), early-secretory (ESE), mid-secretory (MSE), and late-secretory (LSE) endometrium. Independent hierarchical clustering analysis revealed equivalent results, with two major dendrogram branches corresponding to PE/ESE and MSE/LSE and sub-branching into the four respective phases with heterogeneity among samples within each sub-branch. K-means clustering of genes revealed four major patterns of gene expression (high in PE, high in ESE, high in MSE, and high in LSE), and gene ontology analysis of these clusters demonstrated cycle-phase-specific biological processes and molecular functions. Six samples with ambiguous histology were identically assignable to a cycle phase by both principal component analysis and hierarchical clustering. Additionally, pairwise comparisons of relative gene expression across the cycle revealed genes/families that clearly distinguish the transitions of PE-->ESE, ESE-->MSE, and MSE-->LSE, including receptomes and signaling pathways. Select genes were validated by quantitative RT-PCR. Overall, the results demonstrate that endometrial samples obtained by two different sampling techniques (biopsy and curetting hysterectomy specimens) from subjects who are as normal as possible in a human study and including those with unknown histology, can be classified by their molecular signatures and correspond to known phases of the menstrual cycle with identical results using two independent analytical methods. Also, the results enable global identification of biological processes and molecular mechanisms that occur dynamically in the endometrium in the changing steroid hormone milieu across the menstrual cycle in normo-ovulatory women. The results underscore the potential of gene expression profiling for developing molecular diagnostics of endometrial normalcy and abnormalities and identifying molecular targets for therapeutic purposes in endometrial disorders.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.