Abstract

Insulin-like growth factor-1 (IGF-1) regulates cellular lipid content, whereas pregnancy-associated plasma protein-A (PAPP-A) increases IGF-1 bioavailability. Using in vitro-matured cumulus-oocyte complexes, we aimed to evaluate the impact of PAPP-A on the blastocyst lipid content, embryo cryotolerance and embryonic transcriptional profile. We determined that PAPP-A did not affect the lipid content of oocytes, blastocysts, or blastocyst yield (P > 0.05). However, PAPP-A modulated the embryo transcriptional profiles by downregulating PPARGC1A and AKR1B1, which are related to lipid metabolism; CASP9, a pro-apoptotic gene; and IFN-τ, a marker of embryo quality (P < 0.05). Furthermore, the use of PAPP-A improved blastocyst re-expansion in the first 3h of culture after vitrification (P < 0.05). Although PAPP-A did not affect the blastocyst lipid content or embryo production, we suggest that embryonic transcriptional modulation could contribute to maintain the balance in embryo lipid metabolism. Furthermore, PAPP-A's approach seems to control key intracellular pathways that improve post-cryopreservation development of blastocysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call