Abstract

Many kinases and hormone receptors, important for cancer cell proliferation and survival, bind to and are dependent on the Hsp90 cycle for their folding and maturation. This provides the rationale for the development of small-molecule ATP competitors that, inhibiting Hsp90 function, lead to degradation of the "client" proteins. After continual efforts to improve the pharmacologic properties and the tolerability of these molecules, several Hsp90 inhibitors have exhibited activity in both preclinical models and in the clinical setting. As is the case with many other targeted agents, patient selection seems to be the major limitation to the success of these compounds. ERBB2-positive patients with breast cancer are exquisitely sensitive to Hsp90 inhibition. This is because ERBB2 is indispensable for growth and survival of this subtype of cancer, and at the same time ERBB2 is a client protein strictly dependent on Hsp90 for its maturation and stability. Extensive preclinical work identifying other ERBB-like client proteins will likely lead to the ability to enhance selection of appropriate patients for enrollment in more rational clinical trials. Hsp90 inhibition has also been reported to synergize with other therapeutic agents. Several ongoing studies testing different combinations of Hsp90 inhibitors with other targeted agents will confirm whether Hsp90 inhibition can potentiate the efficacy of targeted therapy and/or prevent the emergence of drug resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.