Abstract

Proteases known as sheddases cleave the extracellular domains of their substrates from the cell surface. The A Disintegrin and Metalloproteinases ADAM10 and ADAM17 are among the most prominent sheddases, being widely expressed in many tissues, frequently overexpressed in cancer, and promiscuously cleaving diverse substrates. It is increasingly clear that the proteolytic shedding of transmembrane receptors impacts pathophysiology and drug response. Receptor substrates of sheddases include the cytokine receptors TNFR1 and IL6R; the Notch receptors; type-I and -III TGFβ receptors; receptor tyrosine kinases (RTK) such as HER2, HER4, and VEGFR2; and, in particular, MET and TAM-family RTKs AXL and Mer (MerTK). Activation of receptor shedding by mechanical cues, hypoxia, radiation, and phosphosignaling offers insight into mechanisms of drug resistance. This particularly holds for kinase inhibitors targeting BRAF (such as vemurafenib and dabrafenib) and MEK (such as trametinib and cobimetinib), along with direct sheddase inhibitors. Receptor proteolysis can be detected in patient fluids and is especially relevant in melanoma, glioblastoma, lung cancer, and triple-negative breast cancer where RTK substrates, MAPK signaling, and ADAMs are frequently dysregulated. Translatable strategies to exploit receptor shedding include combination kinase inhibitor regimens, recombinant decoy receptors based on endogenous counterparts, and, potentially, immunotherapy. Clin Cancer Res; 23(3); 623-9. ©2016 AACR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.